Spatial ability or visuo-spatial ability is the capacity to understand, reason, and remember the visual and spatial relations among objects or space.
Visual-spatial abilities are used for everyday use from navigation, understanding or fixing equipment, understanding or estimating distance and measurement, and performing on a job. Spatial abilities are also important for success in fields such as sports, technical aptitude, mathematics, natural sciences, engineering, economic forecasting, meteorology, chemistry and physics. Not only do spatial abilities involve understanding the outside world, but they also involve processing outside information and reasoning with it through representation in the mind.
Spatial perception is also very relevant in sports. For example, a study found that cricket players who were faster at picking up information from briefly presented visual displays were significantly better batsmen in an actual game. A 2015 study published in the Journal of Vision found that soccer players had higher perceptual ability for body kinematics such as processing multitasking crowd scenes which involve pedestrians crossing a street or complex dynamic visual scenes. Another study published in the Journal of Human Kinetics on fencing athletes found that achievement level was highly correlated with spatial perceptual skills such as visual discrimination, visual-spatial relationships, visual sequential memory, narrow attentional focus and visual information processing. A review published in the journal Neuropsychologia found that spatial perception involves attributing meaning to an object or space, so that their sensory processing is actually part of semantic processing of the incoming visual information. The review also found that spatial perception involves the Visual system in the brain and the Parietal lobe which is responsible for visuomotor processing and visually goal-directed action. Studies have also found that individuals who played first person shooting games had better spatial perceptual skills like faster and more accurate performance in a peripheral and identification task while simultaneously performing a central search. Researchers suggested that, in addition to enhancing the ability to divide attention, playing action games significantly enhances perceptual skills like top-down guidance of attention to possible target locations.
Mental rotation is also unique and distinct from the other spatial abilities because it also involves areas associated with Motor skill in the brain.
Spatial visualization is especially important in the domains of science and technology. For example, an astronomer must mentally visualize the structures of a solar system and the motions of the objects within it. An engineer mentally visualizes the interactions of the parts of a machine or building that they are assigned to design or work with. Chemists must be able to understand formulas which can be viewed as abstract models of molecules with most of the spatial information deleted; spatial skills are important in restoring that information when more detailed mental models of the molecules are needed in the formulas.
Spatial visualization also involves imagining and working with visual details of measurement, shapes, motion, features and properties through mental imagery and using this spatial relations to derive at an understanding to a problem. Whereas spatial perception involves understanding externally via the senses, spatial visualization is the understanding internally through mental imagery in one's mind.
Another critical spatial visualization ability is mental animation. Mental animation is mentally visualizing the motion and movement of components within any form of system or in general. It is an ability highly crucial in mechanical reasoning and understanding, for example mental animation in mechanical tasks can involve deconstructing a pulley system mentally into smaller units and animating them in the corresponding sequence or laws in the mechanical system. In short, mental animation is mental imagining how mechanical objects work by analyzing the motion of their smaller parts.
Mental folding is a complex spatial visualization that involves the folding of 2D pattern or material into 3D objects and representations. Compared to other studies, mental folding has had relatively little research and study. In comparison to mental rotation, mental folding is a non-rigid spatial transformation ability which means features of the manipulated object end up changing unlike mental rotation. In rigid manipulations, the object itself is not changed but rather its spatial position or orientation is, whereas in non-rigid transformations like mental folding the object and shapes are changed. Mental folding in tasks usually require a series of mental rotations to sequentially fold the object into a new one. Classic mental folding tests are the Paper folding task which is similar to Origami. Origami also requires mental folding by assessing folding a 2D paper enough times to create a 3D figure.
Visual penetrative ability is least common spatial visualization task which involves ability to imagine what is inside an object based on the features outside.
Spatial visualization is especially important in science and technology. For example, an astronomer must visually imagine the structures of a solar system, and the path of the bodies within it. An engineer must visually imagine the motions of the parts of a machine or building that they are assigned to work with. Chemists must be able to understand formulas which are essentially abstract models supposed to represent spatial dynamics of molecules, and thus spatial skills are important in visualizing the molecule models that are needed in the formulas. Spatial manipulation ability is also important in the field of structural geology, when visually imagining how rocks change through time, such as migration of a magma body through crust or progressive folding of a strati-graphic succession. Another spatial visualization skill known as visual penetrative ability is important in geology as it requires geologists to visualize what is inside of a solid object based on past knowledge.
Current literature also indicates that mathematics involves visuo-spatial processing. Studies have found that gifted students in math, for instance, perform better in spatial visualization than non-gifted students. A 2008 review published in the journal of Neuroscience Biobehavioural Reviews found evidence that visuo-spatial processing is intuitively involved in many aspects of processing numbers and calculating in math. For example, meaning of a digit in a multi-digit number is coded following spatial information given its relation to its position within the number. Another study found that numerical estimation might rely on integrating different visual-spatial cues (diameter, size, location, measurement) to infer an answer. A study published in 2014 also found evidence that mathematical calculation relies on the integration of various spatial processes. Another 2015 study published in the journal of Frontiers in Psychology also found that numerical processing and arithmetic performance may rely on visual perceptual ability.
A 2007 study published in the journal of Cognitive Science also found that spatial visualization ability is crucial for solving Kinematics problems in physics. Nonetheless, current literature indicates that spatial abilities specifically mental rotation, is crucial for achieving success in various fields of chemistry, engineering and physics.
|
|